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1. Introduction.

This period included many scientific observations made with the Chandra Observatory.

The results, as is well known, are spectacular. Fortunately, the HRMA performance continues

to be essentially identical to that predicted from ground calibration data. The Telescope

Scientist Team has improved the mirror model to provide a more accurate description to

the Chandra observers and enable them to reduce the systematic errors and uncertainties in

their data reduction. We also have made considerable progress in improving the scattering

model.

There also has been progress in the scientific program. At this time 58 distant clusters

of galaxies have been observed. We are performing a systematic analysis of this rather large

data set for the purpose of determining absolute distances utilizing the Sunyaev Zel'dovich

effect. These observations also have been used to study the evolution of the cluster baryon

mass function and the cosmological constraints which result from this evolution.

2. Chandra Mirror Activities

2.1. Monitoring and Program Support
We continued to monitor the HRMA mirror performance in flight; during this period we

did not find it necessary to update the basic mirror parameters or ray tracing models as a

result of changes in flight performance. We contributed to NASA's Chandra AO4 Research

Announcement. We rewrote and updated the HRMA chapter of the "Chandra Proposers'

Observatory Guide", which was sent to all the Chandra proposers with the NASA's Chandra

AOs. We also worked with CXC optical group for the ray-trace analysis, with the Chandra

user support group to provide information needed for the Chandra users, and with the CXC

data center to provide information for the CIAO database.

2.2. Scattering
We continued our study of X-ray scattering from random rough surfaces, and established

a new scattering model.

The theory of scattering from random rough surfaces has been the subject of a number

of books and many research papers. The modeling of X-ray scattering at grazing angles

is ditficult because of its short wavelength and the small angle between the wave and the

surface. Almost all the current approaches use a common approximation - the scattering

angle is nmch smaller than the grazing incident angle. Most of the approaches also ignore

the scattering asymmetry around the direction of specular reflection (scattering towards vs.

away from the surface). Many of the present models also are limited to small perturbations

of the ideal surface. These approximations are not adequate for many of the applications

involving X-ray mirrors.



To fully evaluate the Chandra performance and analyze the scientific data, we need

an accurate model of the X-ray scattering. Our new method models the X-ray scattering

directly from first principles. An actual rough surface is (incompletely) described by its

Power Spectral Density (PSD). For a given PSD, model surfaces with the same roughness as

the actual surface are constructed by preserving the PSD amplitudes and assigning a random

phase to each spectral component. Rays representing the incident wave are reflected from

the model surface and projected onto a flat plane, which approximates the model surface,

as outgoing rays and corrected for phase delays. The projected outgoing rays are then

corrected for wave densities and redistributed onto an uniform grid where the model surface

is constructed. The scattering is then calculated by taking the Fast Fourier Transform (FFT)
of the resulting distribution.

Our new method treats the reflection and scattering together, and consequently both

depend upon the surface roughness. It does not require the approximation that the scattering

angle is small compared to the grazing angle so that all the scattered rays can be traced

accurately. This method is generally applicable. We have applied this method to the mirrors

of the Chandra X-ray Observatory and have shown that the calculated scattering profile is

as expected, including the Fraunhofer scattering patterns which result from the finite length
of the surfaces.

This work is still continuing. Next we will generate scattering tables, which are the

tabulations of the scattering function S. Then we will use these scattering tables in our

ray-trace model to simulate the CXO performance and compare it with the real results of

the CXO, from both on-orbit observations and its ground calibrations. This method should

be useful for other X-ray telescope missions as well.

We have presented this work at the SHE '02 meeting. The paper describing this new

method is t)ublished in the SPIE proceedings 4851-11 and is included as appendix A of this

report.

3. The Funtools Project

Tile Funtools project arose out of conversations with astronomers about the decline in

their software development efforts over the past decade. A stated reason for this decline is

that it takes too much effort to master one of the existing FITS libraries simply in order to

write a few analysis programs. This problem is exacerbated by the fact that astronomers

typically develop new programs only occasionally, and the long interval between coding

efforts often necessitates re-learning the FITS interfaces.

As stated in our proposal for this past year, software development plans for tile flmtools

software suite and the xpa messaging system covered the following areas:

• Closer integration of flmtools with the ds9 image display program.

• Enhanced security of funtools and xpa code.

• Developlnent of firewall support in xpa.



• Provide elliptical and rectangular annuli support for funtools region masks.

In all four areas we accomplished significant advances:

1. A graphical parameter interface was developed in ds9 to support user-specified inputs

to analysis routines. Macro expansion of funtools command lines also was enhanced so that

various internal ds9 values could easily be passed to the funtools programs. As a result,

funtools programs now are routinely executed from within ds9. These enhancements were

released in ds9 version 2.1 in April 2002.

2. Code security was enhanced for both funtools and xpa. The insecure Unix sys-

tem() function was replaced by our secure launch() routine. The latter explicitly utilizes

fork()/exec() instead of "sh -c" and thus is not susceptible to the usual shell-based attacks.

The insecure Unix mktemp() routine was replaced by our secure mkrtemp() routine. The

latter makes a unique temporary filename that is hard to guess and optionally opens it us-

ing secure flags that prevent race conditions. These enhancements were released in funtools

version 1.2 in April 2002.

3. The xpa system now supports communication through firewalls. Using the new xpare-

mote command, a local xpa-enabled program such as ds9 can register itself with a remote

xpans name server set in xpa proxy mode. The local ds9 can then receive data and com-
mands from behind a port-blocking firewall, since the socket connection is made securely

from inside the firewall to the xpans on the outside. Network address translation (NAT)

schemes also are handled properly. These enhancements were released in xpa version 2.1 in

April 2002

4. Elliptical and rectangular annuli regions were added to funtools/ds9 spatial masks.

The panda (Pie AND Annulus) shape also was extended to ellipses and boxes. The syntax

for these commands is shown below:
BOX xcenter ycenter xwl yhl xw2 yh2 ... xwn yhn (angle)

BOX xcenter yeenter xwlo yhlo xwhi yhhi n=[number] (angle)

ELLIPSE xeenter ycenter xwl yhl xw2 yh2 ... xwn yhn (angle)

ELLIPSE xcenter yeenter xwlo yhlo xwhi yhhi n=[number] auto(angle)

BPANDA xcen ycen angl ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # box

EPANDA xcen ycen angl ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # ellipse

These enhancements were first released in beta test versions of funtools starting in

September 2002.

For general information on xpa and funtools (including download information), please

see: ht tp://hea-www.harvard.edu/RD/xpa/index.html

http://hea-www.harvard-edu/RD/funt°°ls/index'html

4. Science Program.
The Telescope Scientist guaranteed time is devoted to observations of distant galaxy

clusters to study their evolution and to determine cosmological scale quantities using the

Sunyaev Zel'dovich effect. Cooperative agreements with other scientists, including radio
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observers,havebeenformed. Preliminary data processinghasbeenperformed upon the 58
data sets receivedat this time. This processingincludescorrection for the changesin the
ACIS gain, the identification and elimination of periodsof high background,the removalof
ACIS after-glow effects, the calculation of exposuremaps and images, and the searchfor
serendipitoussources.The superior angular resolution of Chandra showsmore structure in
galaxy cluster systemsthan we had expectedbasedupon pre-Chandra observations;this
significantly complicatesthe final data analysis.

The different sensitivity of the radio and X-ray measurementsto the outer parts of the
cluster contributes to a basic uncertainty in the analysis of these data for the purpose of

determining distances. We have begun a program of simulations of the X-ray and radio data

to determine the sensitivity of the final results to the relatively poorly measured low surface

brightness regions at, large cluster radii.

One very important result already has been obtained, and is in the process of final

preparation for publication by Vikhlinin et al. We find that the cluster density for equivalent

baryon masses strongly evolves between redshifts of 0.4-0.8 and the present epoch; the local

density of mass clusters per unit co-moving volume is approximately 10 times that found at

redshifts of 0.5. The density evolution is a strong function of the cosmological parameters gt

and A. We find that the band in these parameters allowed by cluster evolution is comparable

in scale to the bands allowed by SN Ia and the CMB, and that all three bands intersect in a

small region near the currently commonly used values of f_ = 0.3, A = 0.7. This may either

be viewed as strong supporting evidence that there are not important systematic errors in

the interpretation of the three types of data, or, if we accept the cosmological parameters

as determined form the SN Ia and CMB data, then we have strong supporting evidence for
models of cluster formation.

Dr. Ping Zhao continued the study of stellar black holes. This includes the search for

new black holes and the study of known black holes. Dr. Zhao is a principal investigator of

a program to monitor the quiescent black hole X-ray novae (BHXN), and also is a principal

investigator of a program to search for quiescent X-ray novae among the old optical novae.

Dr. Zhao also is a co-investigator of the Chandra Muttiwavelength Plane Survey Project

(ChaMPlane) which is a project to identify a large sample of serendipitous X-ray sources in

the galactic plane Chandra fields, in order to determine the populations of accretion-powered

binaries in the Galaxy. He has supported these studies with optical observations using the

MMT and Magellan telescopes.
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A new method to model X-ray scattering from
random rough surfaces

Ping Zhao and Leon P. Van Speybroeck

Harvard-Smithsonian Center for Astrophysics

60 Garden Street, Cambridge, MA 02138 U.S.A.

ABSTRACT

This paper presents a method for modeling the X-ray scattering from random rough surfaces. An actual rough
surface is (incompletely) described by its Power Spectral Density (PSD). For a given PSD, model surfaces with

the same roughness as the actual surface are constructed by preserving the PSD amplitudes and assigning a

random phase to each spectral component. Rays representing the incident wave are reflected from the model

surface and projected onto a flat plane, which approximates the model surface, as outgoing rays and corrected
for phase delays. The projected outgoing rays are then corrected for wave densities and redistributed onto

an uniform grid where the model surface is constructed. The scattering is then calculated by taking the Fast
Fourier Transform (FFT) of the resulting distribution. This method is generally applicable and is not limited

to small scattering angles. It provides the correct asymmetrical scattering profile for grazing incident radiation.

We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expect
this method to be useful for other X-ray telescope missions.

Keywords: X-ray scattering, random rough surface, X-ray mirror, X-ray telescope, Chandra X-ray Observatory

1. INTRODUCTION

The study of scattering from random rough surfaces goes back at least to Rayleigh in 1887, l and has been

investigated by many physicists and engineers. The problem has been the subject of numerous books, including

the classic "The Scattering of Electromagnetic Waves From Rough Surfaces" by Beckmann and Spizzichino 2
and countless research papers. 3 Many people have also studied X-ray scattering at grazing angles as part of this

subject. This problem is even more difficult because of the short wavelength (compared to the scale of the surface

roughness) and the sinall angle between tile wave propagation direction and the surface. Most approaches in

the literature make the approximation that the scattering angle is much smaller than the incident grazing angle.
Some of the treatments use the approximation that the surfaces are sufficiently "smooth" so that a low order

expansion in the surface height errors is adequate, and consequently are limited in their applications. Many of

the approaches can not obtain tile scattering asynmletry around the direction of specular reflection (scattering

towards vs. away from the surface). These approximations are not adequate for many of the applications
involving X-ray mirrors.

This new study of the century old problem is motivated by our direct involvement of the evaluation of

the X-ray mirror performance aboard the Chandra X-ray Observatory (CXO) - the NASA's third great space
observatories now have been successflllly operated for three years and have brought us fruitful scientific results

with many exciting discoveries. A major achievement of the CXO compared to previous X-ray missions is its

unprecedented spatial resolution (< 0.5" FWHM). This is mainly due to the design and manufacture of its

X-ray mirrors. These mirrors are the largest, most precise grazing incidence optics ever built. At 0.84-m long
and 0.6 - 1.2-m in diameters, the surface area of each mirror ranging from 1.6 to 3.2 square meters. They were

polished to the highest quality ever achieved for any X-ray mirrors of this size. The surface roughness of these

mirrors is comparable to or less than the X-ray wavelengths in the 0.1-10 keV band over most of the mirror
surfaces.

Further author reformation: Ping Zhao: E-mail: zhaoc(_'cfa.harvard.edu



However,themirrorsarenotperfect,andconsequentlytherearestill smallamountof scatteredX-rays.We
needanaccuratemodeloftheX-rayscatteringto fullyevaluatetheCXOperformanceandanalyzethescientific
data. Wehavebuilt a raytracecomputermodelto simulatethe CXOperformance.In the currentraytrace
model,thereflectionandscatteringaretreatedasseparateeffects.Eachrayhit themirrorisreflectedaccording
thereflectivityofthesurfacegeometryandthelowfrequencysurfacemap,butnotthehighfrequencyroughness,
thereforetheeffectofthe surfaceroughnessonthereflectionefficiencyis lost. The scattering is treated with

small (scattering) angle approximation.

Our new method treats the reflection and scattering together, and consequently both depend upon the

surface roughness. It does not require the approximation that the scattering angle is small compared to the

grazing angle so that all the scattered rays can be traced accurately.

2. POWER SPECTRAL DENSITY OF ROUGH SURFACES

A rough surface is described, statistically, by its surface Power Spectral Density (PSD) as a function of the

surface spatial frequency, f. Consider a 1-dimensional surface with length L and surface height (i.e. deviation

from a perfectly flat surface): z -- h(x), which assumes the value z (-cx_ < z < oc). Its PSD is defined as:*

9

2 /L/2 e'2'_zYh(x) dx " (1)PSD(f) = 2WI(f) = _ J-L�2

The PSD, as it is defined, is the "spectrum" of the surface roughness. Its value at f is simply the "power"

at that frequency. It is easy to distinguish between periodic and random rough surfaces from their PSDs. For

periodic rough surfaces, there are some "spectral lines" in their PSDs; while these lines don't exist for a real

random rough surface.

Given a PSD function 2tV1, the surface roughness amplitude RMS in the frequency band of fl - f2 (both

fl and f2 are positive) can be calculated as:

o"-ii_l = = 2Wl(f)df (2)
l

3. CHANDRA X-RAY OPTICS

The Chandra X-ray optics - High Resolution Mirror Assembly (HRMA) - is an assembly of four nested Wolter

Type-I (paraboloid and hyperboloid) grazing incidence mirrors made of Zerodur and coated with iridium (It). 4-6
The mirror elements were polished by Hughes Danbury Optical Systems, Inc. (HDOS) in Danbury, CT. The

surface roughness was measured during the HDOS metrology measurements after the final polishing, but before

the iridium coating. 7 Tests conducted on sample flats before and after the coating indicate that the coating

does not change the surface roughness.

The instruments used for the measurements were the Circularity and Inner Diameter Station (CIDS), the

Precision Metrology Station (PMS), and the Micro Phase Measuring Interferometer (MPMI, aka WYKO). The
CIDS was used to determine the circularity and the inner diameters. The PMS was used to measure along

individual axial meridians. With these two instruments, HDOS essentially measured the 'hoops' and 'staves' of

each mirror barrel, and thus mapped the entire surface. The micro-roughness was sampled along meridian at

different azimuths using the WYKO instrument at three different nlagnifications (x 1.5, x 10 & x40). 7's

These metrology data were Fourier transformed and filtered. The low frequency parts of the CIDS and PMS

data were used to form nfirror surface deformation (from the designed mirror surface) maps. The high frequency

parts of the PMS data and the WYKO data were used to estimate the surface micro-roughness. Both of them

are parts of the HRMA model we built for the raytrace simulation of the Chandra performance.

"The definition 21V_ is conventional, where the subscript 1 denotes 1-dimensional; the PSD satisfies PSD(-f) =

PSD(f), and typically positive frequency limits are used for most spectral integrals. The total power, e 2, is the integral

of 2W1 from f ----0 to cx_, i.e. a 2 = jo_ 2Wl(f)df.



Table1.HRMAMirrorSectionsandTheirSurfaceRoughness

HRMA Sections Numof

Mirror Surface Roughness Amplitude RMS al-looo/mm (A) Sections
P1 LC LB LA M (88%) SA SB SC 7

50.3 8.49 4.51 3.58 4.91 5.94 53.9

P3 LB LA M (92%) SA SB 5
5.37 5.26 1.96 2.38 4.83

P4 LB LA M (93%) SA SB 5
6.41 3.15 2.57 3.21 6.81

P6 LB LA M (94%) SA SB 5
37.1 5.23 3.34 5.65 20.9

H1 LD LC LB LA M (88%) SA SB SC SD SE SF 11

26.9 5.34 3.64 3.34 3.32 3.32 3.32 3.32 3.53 7.30 60.3

H3 LC LB LA M (92%) SA SB SC SD 8
4.87 2.90 2.23 2.08 2.08 2.10 3.95 5.56

H4 LD LC LB LA M (93%) SA SB SC SD SE 10
7.18 3.83 2.61 2.57 2.36 2.36 2.74 2.68 4.01 29.4

H6 LD LC LB LA M (94%) SA SB SC SD SE 10
19.0 4.92 2.51 2.23 1.95 1.95 1.95 2.07 2.96 15.9

Total 61

The mirror surface micro-roughness has little variation with azimuth, but tends to become worse near the

mirror ends. We divided the data for each mirror into several axial sections which were selected so that the

measured roughness at several places witifin a section were reasonably uniform; this resulted in a total of 61

sections. We then averaged the PSD measurements within each section to provide an estimate of the PSD

for that portion of the mirror element. Table 1 shows the resulting surface roughness in the 61 HRMA mirror

sections. The eight mirrors are named P1.3,4,6 (paraboloid) and H1,3,4,6 (hyperboloid) due to historical reasons
(there were 6 mirror pairs when the HRMA was designed). The number underneath each section name is the

surface roughness amplitude RMS, al-lOO0/mm, calculated according to Eq. (2) for f = 1 - 1000 mm -1. Each

mirror is 838.2 mm in length. The middle sections (M), which are the best polished and hence have the lowest

PSDs, cover most part of the mirror surface (the number in parentheses after each M denote the percentage

coverage). The a's for the M sections are only 2 3 _. The end sections, where the a's are relatively higher,
cover a very small part of the mirror (< 1%), and hence contribute very little to the mirror performance.

Figures 1 and 2 show the PSDs of the M (middle) and SC (small end) sections of P1. P1 and H1 were the first

polished mirror pair and are slightly "rougher" than other pairs (see Table 1). The dash and dotted lines show

the data from different measurements: the PMS data are in the low frequency range (f = 0.001 - 0.3 mm-l);

the WYKO data with 3 magnifications are in the higher frequency range (]" = 0.3 - 1000 ram-l). The solid

line is the combined PSD from all four frequency ranges. The SC section obviously is much rougher than the
M section.

4. MODEL SURFACES

Typically, a random rough surface is only described by its PSD. Most of the methods calculate the scattering
from the surface PSD. However, our method calculates the scattering directly from the surface high frequency

spatial profile. Therefore, we first need to construct a model surface that is consistent with a given PSD. From
a random rough surface profile, one can derive a unique PSD. But from a given PSD one can't construct the

original surface, because the phase information was lost when deriving the PSD. However, one can construct

many model surfaces with tim same roughness as the original one from the given PSD by assigning different
random phase factors to the spectral component.
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To construct a 1-dimensional model surface with length L, we need to obtain N consecutive surface height

values hi = h(xi) with a fixed interval Ax to cover the surface (i.e. NAx = L), and its surface tangent values

h', = h'(.ri). In Appendix A, we show that hi and h/, can be computed from the surface PSD using the following
Fourier transforms:

N/2
1

= Z (3)
j=-(N/2--1)

N/2
I 1

h i = A---7 __, (-_27rfj Hi) e-'_ (4)
j=-(N/2-1)

where Hj = ArCPSD'_ J' At e,_, ' _2j is the assigned random phase factor, and A.f = 1/NA:c. Both hi and h'i

are real, this requires H__ = H i, i.e. PSD(f_9) = PSD(f3) and __j = -pj.

To construct the model surfaces of HRMA, we choose N = 221 and Ax = 0.0004 ram. So L = NAx =

838.86 ram, and Af = 1/NAx = 0.001192 mm -1 . Figures 3 and 4 show one set of model surface sections P1-M

and P1-SC, constructed using Eqs. (3) and (4) with these parameters.

5. SCATTERING FROM MODEL SURFACES

In this section, we calculate the scattering of plane incident waves from a surface model; most of the detailed
derivations of the fornmlae can be found in Appendices B and C.

We assume that the surfaces are sufficiently smooth so that: 1) there is no shadowing of one part of the

surface by another; and 2) there is no reflection from one part of the surface to another, i.e. there are no multiple

reflections by the same surface. For an incident plane wave with grazing angle 0t, the first condition requires

that the absolute values of all the surface tangents, Ih'i], are less than 01. The second condition requires ]h'il less

than 01/2 (when h', = -0t/2, the reflected wave is parallel to the surface). The first condition is automatically
satisfied when the second condition is met. So the surface smoothness condition for applying this method is:

01
th',l < _ (5)

This condition is easily satisfied for all 61 sections of the HRMA, as can be seen by comparing the tangent

distributions in Figures 3 and 4 with the mean grazing angles of the four shells (51.26', 41.27', 36.43', 27.08'),

The scattering in the transverse direction, i.e. the off-plane scattering, is smaller than that in the plane

of incidence by approximately a factor of the grazing angle, and consequently is less than the uncertainties

in our surface PSD. Therefore. in this paper, we ignore the off-plane scattering and limit our discussion to a
1-dimensional surface.

The scattering fornmla is given by the discrete Fourier transform of the field on the fiat surface So, as shown

m Eq. (58) in Appendix C:

[(Oj+q/p)

i=-(N/2 l}

(q:0,1 ..... p-l) (6)

where the scattering intensity I is a function of the scattering angle Oj+q/p, which is the deviation from the
specular reflection direction towards the surface; A is the wavelength; E, is the field amplitude, after the
reflection, on the flat surface at the uniform grid xi where the model surface was constructed. As described

in Appendix C.3, Ei is a function of the incident wave, the model surface height and tangent, and the local

reflectivity..4 is a normalization factor given by Eq. (63). Again we choose N = 221 to use the entire length of
the model surface for the FFT computation.
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zoomed into the core of the peak; it shows the Fraunhofer diffraction pattern due to the finite mirror length. The
bottom-left panel shows the fractional Encircled Energy (EE) verses the scattering angle, for both sides of the specular
direction, and also their sum. The bottom-right panel shows the scattering function $ verses the scattering angle in the
same range as the top-right panel.

Figures 5 and 6 show the scattering results for 1.49 keV X-rays incident upon the mirror P1 at its mean

grazing angle (51.26'). The top two panels show the scattering field intensity verses the scattering angle. The

sharp peak of specular reflection (top-left) and the Fraunhofer diffraction pattern (top-right) are shown as

expected. The bottom two panels show the fractional Encircled Energies EE+, EE_, EE and the scattering

1/00EE+(O) - g, I(O)dO- 7_£, I(O)dO (7)

' i °_ I;'I(O)dO - 1 I(O) dO (S)
EE_(O) - S_ o Rgi o

1/@- S;I(O) dO - 1 S(O) dO (9)
EE(O) = _. o 7-4,Yi o

function S defined as:
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Figure 6. Scattering from model surface P1-SC. It has much broader scattering peak than P1-M,

110 if$(0) - ,. l(O)dO = _----_ _. I(O)dO (10)
_-,.s -oc

where Ei, _'7_and 7_ are the total incident and scattered energy and the reflectivity of the rough surface as

described in Appendix C.5.

6. SUMMARY AND FUTURE WORK

We have developed a method to model the wave scattering from random rough surfaces. Model surfaces with

the same roughness as the actual surface are constructed from the actual PSD. The scattering from the model
surfaces is calculated using the scattering formulae we derived in this paper. These scattering formulae are

based on the general Kirchhoff equations but without small angle approximations. This method treats the
reflection and scattering together and provides the dependence of the reflectivity on the surface roughness. It

is applicable in general and is especially useful for X-ray scattering at grazing angles. We have applied this
method to the mirrors of the Chandra X-ray Observatory and have shown that the calculated scattering profile

is as expected, including the Fraunhofer scattering patterns which result from the finite length of the surfaces.

This work is still continuing. Next we will generate scattering tables, which are the tabulations of the

scattering function S. Then we will use these scattering tables in our raytrace model to simulate the CXO

performance and compare it with the real results of the CXO, from both on-orbit observations and its ground
calibrations. This method should be useful for other X-ray telescope missions as well.



APPENDIX A. CONSTRUCTION OF MODEL SURFACES
A.1. Fourier Transform

The Continuous Fourier Transform equations areg:

FH(I) = h(x) e_21rzf dx (forward) (11)
o_

Fh(z) = H(f) e -_'''_I df (inverse) (12)
OG

Here if h is a function of position, z, in ram, H will be a function of spatial frequency, f, in mm -l.

When there are N consecutive sampled values at x = zi with the sampling interval Ax, we make the
transform:

_iV ..... ..... _N (13)x _ xi=_iAx, h(x)_hi-h(xi), i=-(-_--1) -1,0,1

f _ fj -j A f, H(f) :=z Hj - H(fj) N N (14)
Ax' j=-(-_--1) .... ,-1,0,1 ..... -_-

where AxAf = 1/N. We obtain the Discrete Fourier Transform equations:

N/2

Hj = Z hi e '_ (forward) (15)
i=--(N/2--1)

N/2
1

hi = ._ Z Yy e-'_ (inverse) (16)
j=-(N/2-1)

A.2. Surface Height

From Eq (1), we obtain:

'2 [L/2

PSD(f) = -£ J-L�2 CPSI)-(2f)L - _L/f2e,2._lh(x)dx
(17)

Here PSD(f) is a real continuous function of the spatial frequency f. We first need to convert Eq (17) to a

discrete Fourier transform. Using the equations in A.1 and relation L = NAx = l/A f, we obtain:

IHJl - IH(fJ)l -Ax Axl CPS_fj) L - NCPSD(fj) Af

Therefore H a can be expressed as the forward Fourier transform of hi as

N/2

Z hi e '_

i=-(N/2-1)

(18)

fj N/2Hj = N PSD( ) Afe'_J = Z hi e'_ (19)

i=-(N/2-1)

Hence the surface height, h(x_) = hi, can be expressed as the inverse Fourier transform of Hj

N/2 N/2 ¢ fj
1 _,_._ 1 PSD( ) Afe,_,j e-'_

hi = 7_ Z Hje "_ = -- E N (20)N
j=-(N/2-1) j=-(N/2-I)

where _j is a random phase factor. A set of surface heights, hi, can be generated from a set of phase factor _2j-

Therefore for a given PSD, we can generate as many sets of surface map (of the same roughness) as we want by

changing the random phase factor _j. Because h,, the surface height, has to be real, this requires H_ i = HI,
i.e. PSD(f_j) = PSD(fj) and sz-j = -v)i.



A.3. Surface Tangent

Since

N/2
1 x/2 1 e-,2,,,ij (21)

hi- N _ Hje -'_ - N E Hj
j=-(N/2-1) _=-(N/._-I )

The surface tangent can be obtained by taking the derivative on both sides of Eq. (21) with respect to xi:

N/2
1 N/2 1

hi = _ E (-zerf/ Hi) e -'2_*'I, = -- Z (-z2rTfj Hi) e -'_ (22)
' N j=-(N/2-1)

j=-(N/2-1)

The surface tangent h_ also has to be real. This condition is automatically satisfied because

-z2rrf_j g_j = -_27r(-fj) H i = _27rf._ H_ = (-z2rrfj Hi)* (23)

APPENDIX B. KIRCHHOFF SOLUTION

The wave scattering from random rough surfaces is described by the Kirchhoff solution 2 and its far-field ap-

proximation.

k 1

-1_/2 So I_12

r o

> X

Figure 7. Wave scattering from a random rough surface. A flat surface So with z : 0 lies in the x-y plane (y-axis not

shown). A rough surface S has surface height z = h(x,y), deviates from So. The z axis is normal to the x-y plane and

points up. Incident and reflecting (or scattering) wave-vectors are shown as kl and k2. Incident and reflecting grazing

angles with respect to the surface So are 0t and 02. r0 is the observation point where the scattering is to be measured.

As shown in Figure 7, define:

* So -- 2-dimensional flat surface at z = 0.

• S -- 2-dilnensional rough surface, described by its surface height z = h(x, y).

• Ele,k,'r = Ele'(k, *+k3z) - incident plane wave (in the incident plane, therefore k2 = 0).

. Ege,k2-r = E,e,(k_z+k_v+k::) -- reflected or scattered wave from the rough surface S.

• 01, 02 - incident and reflecting grazing angles with respect to the surface So.



where kl and k 2 are the wave vectors of the incident and scattered waves, so El • kl = 0, E2. k2 = 0, and

= - Ik,l = + = Ik._,t= V/k + + k'.-' (241

A vector norinal to the local surface on S is given by:

Oh(x, y) Oh(x, y)
n = -V(h(x,y)-z) - Ox x Oy 3"+ _ (25)

The field at an observation point ro is given by the integration of contributions from the field E(s)e '(k_z+k_:)
on the surface S:

l /s f if/ E(s)e,(k,x+k3h(,,v)) e 'krE(r0) = _-_ dsE(s)e '(k_+k3:) e'krr--5- (ft. r) = _-_ dxdy r---_- (n. r) (26)

where ds is all element of surface area; E(s) is given by the incident wave E1 multiplied by the suitable

reflection coefficient; the vector r goes .from the point of integration (x, y, z) to the observation point (x0, Y0, z0),
and r = Ir]; flis a unit vector in the direction of n, and (fi-r) ds = (n.r) dxdy. Eq. (26) isknown as the

general Kirchhoff solution for the wave scattering.

Next we derive the far-field approximation of this solution. When the reflecting surface is near the origin of

the coordinate system and tile observation point is far from the origin, i.e. when (x << x0, y << Yo, z << zo), we
have:

= (2;)k.,
- l_l ro

ro

r = (xo-x)fc+(yo-y)_r+(Zo-Z)f_ ._ xof_+yoy+zo_ -_ -_. (kxS+kvS'+k:_) (28)

Xo Yo zo
r = ]r[ = V/(xo - x) 2 + (Yo - y)2 + (zo -- z) 2 _ ro - --x -- --y - --z (29)

ro ro ro

where ro = lrol = v/xo + y2 + Zo" Keep the first order of r in the phase factor and zeroth order elsewhere:

[ 0h(:r,y)Oh(x,V)]ro k_-- + k u k_ (30)
n . r _ - k Ox Oy

e zkr _ e tk(r°-_°x-v°u-_°z).o-o _ -o - _ e *kr° C-*(k*x+kvy+k_h(x'Y)) (31)

Eq. (26) becomes:

E(ro) If '_° [k_Oh(_, k Oh(x, J1 dxdy E(s)e '(k_ _+k_) e ..... -,(k..+k.V+k_:) ro y) y)
-t-A roe k [: _ + "v _y k. (32)

- te'k_° k Oh(x,y) k_-] (33)
J

letkr° f J ]-- 27i"1"0 d.rdyE(s)e '[(ki-k')z-k_y+(ka-k:)h(x'y)] fG Oh(x'y) k Oh(x,y) kz (34)L--O-U-x + _ Oy

This is the far-field approxinmtion of the Kirchhoff solution for the wave scattering.

APPENDIX C. SCATTERING FORMULA

In this section, we derive the scattering formula from the Kirchhoff solution for the constructed model surfaces.
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Figure 8. The scattering geometry. The flat surface So is located on the x axis. The z axis is normal to the surface S0.
The u-v axes form a coordinate system that is rotated clockwise from the x-z axes by (-_ - 01), so the v axis is aligned
with the specular reflection direction. An incident ray, kl, comes in from the left with a grazing angle 0_; had it struck
the surface So at Xl it would have been reflected parallel to the v axis as k2o. However, it actually strikes the rough

surface S at, ri(.ri Z ), and is reflected at an angle 02 as k2. The intersection of k_ with the surface So is at x_,.

C.1. Integral on 1-dimensional fiat surface So

We first reduce the Kirchhoff solution to a 1-dimensional integral oil flat surface So. Consider:

• In plane scattering: ky = 0

• One dimensional surface, i.e. h(x, y) only depends on x: h(.r, y) = h(x)

Eq, (33) becomes:

E(r0) -- 2rr dxE(s) e '(k'x+kah(x)) e-z(k_x+k_h(x)) kxO ) k:

here we have omitted a dimensionless factor a = Y/ro, where )" is the transverse surface dimension; this factor

will be absorbed later in an overall normalization factor ,4.

Figure 8 shows the scattering geometry. The incident ray, kl, strikes the rough surface at ri(xi, zi) and
is reflected as k2, where xi is one of the N positions of the constructed model surface (see Appendix A) and

zi = h(xi) = hi. The reflected field at ri is

E(ri) e '(k'x'+k3:i) = E(xi,hi) ff,tk,xi+kshl) (36)



Fortheintegral(35),this is equivalentto haveafieldat (xr,,0), the intersectionof k2andx axis.on tile
surfaceS0 described by:

E(xr,,0) = E(ri) e '(klz'+kah'-kh'/sin°=) (37)

where khi/sin 02 is the phase delay" between (xi, hi) and (mr,,0). Let:

E(xri ) = E(x,.,, 0) e -'k'x'i _- E(ri) e '(k'xi+kahl-khl/sin O2-k,.. i ) = E(ri) e' ¢' (38)

So the integral (35) can be written as

*e'kr° / dx E(x) e'{klx-k'ar-kzh(*)) [k_ObJ-_¢) ka] (39)E(ro) - 2rr

Now the integration boundary has changed from E(s) on the rough surface S to E(x) on the flat surface So,

so h(x) = 0 and _ = O. Therefore Eq. (39) becomes:Oar

E(r0) = E(k.,k:) - 'e'k"° / *k:e'kr° / dxE(x) e'(k'-k')x (40)2rr dxE(x) e '(kl-k*)ar (-k..) - 271"

here the reflected field E(x) are calculated at non-uniformly distributed, discrete points x = x,.,. The position,
x_,, and the phase, Oi, of the field E(xr,) are:

hi

= xi tan 8.,_ (41)
Xr i

Oi
:-klXi-l-k3hi khi klxr,:k(cos81xi-sinS, hi hi ( hi ))sin 82 sin O_ cos 01 x i ta-nn82

1 cos 01 _ 1 - cos(01 + 02) sin20+_+°22°= -khi sin01+ sin02 _an-O__] = -khi sin02 = -2khi sin02 (42)

where k3 = -ksin O1, because, by definition, the z axis points up.

Thus for the field E(s) of each ray kl at ri, we can use its equivalent field E(x) at x,., to do the integral
(Xr, < xi when hi > 0, Xr, > Xi when hi < 0).

C.2. Fourier transform with variable

Define a coordinate system u-v that is rotated clockwise from the x-z axes by ( ._ - 01 ), SO the v axis is aligned
with the specular reflection direction (see Figure 8). Define the scattering angle, 0, as the angle of deviation
clockwise from tile v axis, i.e. O = Ol - 0_. Also define tile variable _ = _ Therefore:

" 2;,r "

kl = k cos01, kx = k cos02 = k cos(01-O), k: = k sin02 = k sin(Ol -O) (43)

O O (44)
27r_ = kl - t,'2 = k cos Ol - k eos(01 -0) = - 2 k sin( 01- -_) sin7

0 = 01-cos -1 cos01- = 01-cos -l(cosOl-_A) (45)

The scattering equation (40) becomes:

E(ro) = E(((0)) = - _e'kr°k sin(el2rr -O)/dxE(x)e,2._z = _ ,e'k_°si,t(OlA --0)/dxE(x)e,,_,_ . (46)

Thus, the scattering field E({) can be obtained from the Fourier transform integral of the field E(x) on the
surface So. And it can be can be expressed as E(0) using Eq. (44).



¢

C.3. Discrete Fourier transform at xi

In practice, this integral is performed nmnerically using the Fast Fourier Transform (FFT) on N uniformly'
distributed points xi's where we constructed the model surface. Therefore we need to convert the field E(a>,)

to the field E(xi). This can be simply done by multiplying E(x_,) with two factors:

hi
E(xi) = Ai Bi E(xr,) = Ai Bi E(xi - tan 0.----2,) = Ai Bi E(ri)e _°` (47)

Where the factor Ai is used to adjust the incident plane wave density due to the different surface height hi's

at the uniform grid a'i s; it is calculated by' intercepting all the incident rays that strike on the surface S at

(xi, hi)'s with a coordinate that is perpendicular to the direction of incidence. Let the intercepting points be

wi's on the coordinate. Then:

u,i+l - u,i-i (48)
Ai = 2 Ax sin01

The factor Bi is used to adjust, the outgoing ray density due to the redistribution of the reflected rays from the

non-uniform grid x_, to the uniform grid xi. For example, when the point x_, falls between the fixed grid points

xi-1 and xi (xi - xi-1 = Ax), then

xi - Xr, E(x_,) is added to field E(xi-1) (49)
Ax

x_, - xi-1 E(x_,) is added to field E(xi) (50)
Ax

This process is done for each ray until all the fields are redistributed to the uniform grid xi.

Having obtained the field E(xi) on uniform grid, xi, we can rewrite the scattering equation (46) as the

discrete Fourier transform (see Appendix A.1). Let:

y N

x _ xi--iAx, E(x) ::v Ei-E(x,), i=_(2_1),...,_1,0,1 .... ,_- (51)

\r N

E((j) J = -(2 - 1),...,-1,0, 1 ..... _- (52)=_ (j = j A(, E(() ==_ Ej --- A.r

where AxA_ = 1/N. The scattering equation (46) beconms:

E((j) w kr°si'n(01 -- Oj)
Ea - Ax A

N/'_

E Ei e _ '_
i=-(N/2-1)

(53)

where

Ei = E(.ri) = AiBiE(ri) eml = ,4iBiEIR( O1 +tan-_(h'i))e'¢' (54)

where R(Ol + ta, -l (h'i)) is the reflection coefficient of ray' i with the local grazing angle, O1 + tan -1 (h',), on the

rough surface S. h'i is the local surface tangent of the model surface.

The scattering intensity, I, is given as a function of the scattering angle, O, by:

,) N/2

i=-(N/2-1)

(55)

where A is a normalization factor which we will derive in section C.5.
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C.4. Scattering formula- the Fraunhofer diffraction pattern

With the Eq. (55), it seems that we can finally obtain the profile of scattering from the rough surface. However,

this is not quite true, because of the discrete Fourier transform. The main disadvantage of the discrete Fourier

transform is (what else?) "discrete". Its shortcomings are displayed perfectly in this case. Eq. (55) is correct,

but all of the points except the central peak (0j = 0) are calculated in the valleys of the Fraunhofer diffi'action
pattern at:

jA jA

Oj = - N Axsin01 Lsin07' j = ±1,±2,±3 .... (56)

where L is the surface length. In case of a perfect surface, Eq. (55) gives I(Oj) = 0 except for one point at j = 0,

and the correct diffraction pattern from the finite surface length is not obtained. To get the diffraction patterns

at angles between 0j and 0j+l, we divide 0j+l - 0j into p equal spaces. Tile diffraction pattern at Oj+q/p(q < p)

can be calculated as:

l(Oj+q/p) Ax sin(01 -- Oj+q/p) ) 2= .,4 X

( Ax sin(Ol -- Oj+q/p) ) 2= A -£

N/2 g_[2
Z E, (q=0,1,2 ...,v-l)(57)

i=-(N/2-1)

N/2 / t 2_iq/p \ [2

Z (Eie ---w--) e"_ (58)
i=-(N/2-1)

So instead of one Fourier transform equation on Ei, we need do p Fourier transform equations on Ei e w .

Usually, p -- 8 is sufficient to calculate very nice Fraunhofer diffraction patterns. Eq. (58) is the final scattering

formula. It maps the field on the surface, E(x), to the field intensity of scattering, 1(0).

C.5. Normalization

Now let's derive the normalization factor ,4 introduced in Eq. (55). Let c be the energy carried by each of the

N incident rays of the plane wave El. The total incident energy, _',, total reflected energy on the surface, S_,
and the total scattered energy, c,_, are:

c N_7

N/2 NI2

i=--(N/2-1) i=-(N/2-1)

Es = f dOI(O) = A

Define the reflectivity of the rough surface as:

A'_B_ [R(O, + t,.,-'(/,;)) I'

(59)

(60)

(61)

N/".
¢ 1
_r -- Z-- & N

i=-(N/'2-1)

A 2`B[9 tR(01 -1- ta.-'(/4))( 2 (62)

Let [_ = Es. We obtain:

A
v--_N/2 ') 2 tan-X(h,i))[ 2e _--_i=-(N/2-1) A7 Bi JR(01 + eNT_ _iR

- - (63)
f d_lE(_)[ 2 .f d_ IE(_)I" fd(iE(_)[ 2
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